Modeling High-Dimensional Multichannel Brain Signals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Scale Factor Analysis of High-Dimensional Brain Signals

In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive spatiotemporal data defined over the complex networks into a finite set of regional clusters. To achieve further dimension reduction, we represent the si...

متن کامل

Blind Signal Processing Methods for Analyzing Multichannel Brain Signals

A great challenge in neurophysiology is to asses non-invasively the physiological changes occurring in different parts of the brain. These activation can be modeled and measured often as neuronal brain source signals that indicate the function or malfunction of various physiological subsystems. To extract the relevant information for diagnosis and therapy, expert knowledge is required not only ...

متن کامل

High-Dimensional Additive Modeling

We propose a new sparsity-smoothness penalty for high-dimensional generalized additive models. The combination of sparsity and smoothness is crucial for mathematical theory as well as performance for finite-sample data. We present a computationally efficient algorithm, with provable numerical convergence properties, for optimizing the penalized likelihood. Furthermore, we provide oracle results...

متن کامل

Multichannel Coding of Applause Signals

We develop a parametric multichannel audio codec dedicated to coding signals consisting of a dense series of transient-type events. These signals of which applause is a typical example are known to be problematic for such audio codecs. The codec design is based on preservation of both timbre and transient-type event density. It combines a very low complexity and a low parameter bit rate (0.2 kb...

متن کامل

Modeling High Dimensional Time Series

This paper investigates the effectiveness of the recently proposed Gaussian Process Dynamical Model (GPDM) on high dimensional chaotic time series. The GPDM takes a Bayesian approach to modeling high-dimensional time series data, using the Gaussian process Latent Variable model (GPLVM) for nonlinear dimensionality reduction combined with a nonlinear dynamical model in latent space. The GPDM is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics in Biosciences

سال: 2017

ISSN: 1867-1764,1867-1772

DOI: 10.1007/s12561-017-9210-3